INTRODUCTION¶
Low-earth-orbit (LEO) satellite networks (LSNs) are evolving rapidly in recent years, thanks to the fast deployment of mega-constellations such as SpaceX’s Starlink [10], Eutelsat OneWeb [5] and Amazon Kuiper Project [2]. Emerging LSNs aim to provide broadband coverage and low-latency services globally, and are carrying an increasing amount of Internet traffic [3]. For example, Starlink, the largest operational LSN today, has attracted more than 4 million worldwide customers on 7 continents as of September 2024 [7].
低地轨道(LEO)卫星网络(LSNs)近年来发展迅速,得益于诸如SpaceX的Starlink 、Eutelsat OneWeb 和亚马逊Kuiper项目等巨型星座的快速部署。新兴的LSNs旨在全球范围内提供宽带覆盖和低延迟服务,并承载着日益增长的互联网流量。例如,截至2024年9月,Starlink作为目前最大的运营LSN,已吸引了遍布七大洲的超过400万用户。
One key property differentiating LSNs with other existing terrestrial networks is that: a portion of the network infrastructure (i.e., the space segment) is moving at a high velocity related to the earth surface. Hence, for a network path through LSN, a sub-set of its intermediate links continuously change over time, imposing substantial challenges on existing end-to-end congestion control algorithms (CCAs).
与其他现有地面网络相比,LSNs的一个关键特性是:部分网络基础设施(即空间段)相对于地球表面以高速移动。因此,对于通过LSN的网络路径,其部分中间链路会随着时间不断变化,这对现有端到端拥塞控制算法(CCAs)提出了重大挑战。
On the one hand, the unique LEO mobility not only results in rapidly varying satellite link capacity, but also involves frequent non-congestion RTT variations (e.g., caused by path fluctuations) and bursty packet losses (e.g., due to groundsatellite handovers). On the other hand, existing end-to-end CCAs leverage the network performance changes observed on the sender to infer congestion, but they are unable to discriminate whether the network variation is exactly caused by a congestion event (e.g., queuing at the bottleneck link) or not. As we will show in §3, the frequent non-congestion network variations caused by LEO mobility often mislead existing CCAs such as TCP Cubic [23], Vegas [13], Copa [11] etc., and further result in self-restrained CCA performance.
一方面,LEO独特的移动性不仅导致卫星链路容量快速变化,还涉及频繁的非拥塞RTT变化(例如,由路径波动引起)以及突发性数据包丢失(例如,由于地面与卫星之间的切换)。另一方面,现有的端到端CCAs通过发送端观察到的网络性能变化来推断拥塞,但无法区分网络变化是否确实由拥塞事件(例如瓶颈链路排队)引起。如我们将在§3中展示的,由LEO移动性引起的频繁非拥塞网络变化通常会误导现有CCAs,例如TCP Cubic 、Vegas 、Copa 等,并进一步导致CCAs性能受限。
Note
LEO的高速移动性 -> 性能指标改变,但是原因不是拥塞,而是高速移动产生的副作用(“非拥塞网络变化”) -> LEO CC 认为拥塞发生并进行“本毫无必要”的调整 -> 链路利用率低 / 延迟高
We advocate that CCAs in LSNs require more effective indicators that can help the sender discriminate non-congestion performance changes and estimate network conditions more accurately. On our further investigation (§4), we find that the unique LEO mobility is managed and scheduled by a special feature called "LEO reconfiguration" in LSNs, which is closely related to the non-congestion network variations, and thus is a potential indicator for discriminating non-congestion network variations (e.g., link capacity and propagation RTT changes due to LEO mobility).
我们主张,LSNs中的CCAs需要更有效的指标,以帮助发送端区分非拥塞性能变化并更准确地估计网络状况。在进一步研究中(§4),我们发现LEO独特的移动性通过一种特殊功能——“LEO重配置”在LSNs中进行管理和调度。该功能与非拥塞网络变化密切相关,因此可能成为区分非拥塞网络变化(如链路容量和由于LEO移动性导致的RTT传播变化)的潜在指标。
Note
我们需要一个“衡量因子”作为指标,帮助 发送端 区分 “这”是不是“非拥塞网络变化”
好在我们找到了一个因子,叫 LEO reconfiguration
,它跟LEO运行轨迹等有关
To demonstrate the potential benefit of LEO reconfiguration, we conduct case studies and modify the congestion control logic of two representative CCAs: Copa and BBR (§5). Our preliminary results based on trace-driven network emulation show that even with a simple reconfiguration-aware modification: (i) Copa achieves 74.4% throughput improvement; and (ii) BBR reduces 30.2% delay on average, as compared to their original implementations. We finally discuss several open questions and hope they can inspire future CCA research for emerging LSNs (§6).
为了展示LEO重配置的潜在优势,我们进行了案例研究,并修改了两种具有代表性的CCA(Copa和BBR)的拥塞控制逻辑(§5)。基于轨迹驱动的网络仿真,我们的初步结果表明,即使仅进行简单的重配置感知修改:(i)Copa实现了74.4%的吞吐量提升;(ii)BBR平均减少了30.2%的延迟,相较于其原始实现。
最后,我们讨论了一些开放性问题,希望能为新兴LSNs中的CCA研究提供启发(§6)。