Lecture 6: Floating Point¶
Warning
"95% of the folks out there are completely clueless about floating point".
– James Gosling, 1998-02-28
上课时我爱搭不理,做作业发现要逐帧学习🤡
- Andrew Joker Hu🐷
现在才发现课前这句话说的太对了,Lecture 6 是目前为止我认为最难的一节课,也在课后花费很多时间才将其完全弄清楚
这一节的笔记风格切换回“国内课堂”,跳过前言和引入,以及思维指导,我们直接上结论:


| C | |
|---|---|
1 | |
We know the bias = -(2^(k-1)-1) = -127
Signal Bitis1, so-1000 0001is theexponent, which is129in decimal, so2^(129-127) = 2^2 = 4Significandequals to0.111
So the result is (-1) * (4) * (1.111)_2 = -7.5
Special Presentation¶
Representation for 0¶
| C | |
|---|---|
1 2 3 4 | |
exponentall zeroessignificandall zeroes
Representation for Not a Number¶
What do I get if I calculate sqrt(-4.0) or 0/0?
- If ∞ not an error, these shouldn’t be either
- Called
Not a Number (NaN) Exponent= 255,Significandequals to nonzero
Representation for Denorms¶
Problem: There’s a gap among representable FP numbers around 0
Smallest representable pos num:
\(a = {1.000...000}_2 * 2^{-126} = 2^{-126}\)
Second smallest representable pos num:
\(b = {1.000...001}_2 * 2^{-126} = 2^{-126} + 2^{-149}\)

Summary¶

