Conclusion¶
To advance futuristic research on ISTNs, this paper presents STARRY NET, an experimentation framework that empowers researchers to conventionally and flexibly build ENEs for ISTN research. STARRY NET simultaneously achieves constellation-consistency, network realism, and flexibility, by integrating real constellation-relevant information, orbit analysis and large-scale emulations to construct ENEs. By comparing STARRY NET’s results with live network performance and conducting diverse case studies, we demonstrate S TAR RY N ET’s fidelity and flexibility for various ISTN experiments. We are confident that the open-source STARRY NET can help the network and system community to flexibly conduct various ISTN evaluations with more credible results.
为了推动 ISTN 的未来研究,本文提出了 STARRY NET,这是一个实验框架,使研究人员能够以传统和灵活方式构建 ENE 用于 ISTN 研究。
STARRY NET 通过 集成真实的星座相关信息 、轨道分析和大规模仿真来构建 ENE,同时实现了星座一致性、网络真实性和灵活性。
通过将 STARRY NET 的结果与实时网络性能进行比较并进行各种案例研究,我们展示了 STARRY NET 对各种 ISTN 实验的保真度和灵活性。
我们相信,开源 STARRY NET 可以帮助网络和系统社区灵活地开展各种 ISTN 评估,并获得更可靠的结果。